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ABSTRACT The oscillatory properties of single thalamocortical neurons were investigated by using a Hodgkin-Huxley-like
model that included Ca2+ diffusion, the low-threshold Ca2* current (/1) and the hyperpolarization-activated inward current (/,.).
I, was modeled by double activation kinetics regulated by intracellular Ca2*. The model exhibited waxing and waning oscillations
consisting of 1-25-s bursts of slow oscillations (3.5—4 Hz) separated by long silent periods (4—20 s). During the oscillatory phase,
the entry of Ca2* progressively shifted the activation function of /,,, terminating the oscillations. A similar type of waxing and
waning oscillation was also observed, in the absence of Ca* regulation of /,,, from the combination of /1, /,,, and a slow K*
current. Singular approximation showed that for both models, the activation variables of /,, controlied the dynamics of thala-
mocortical cells. Dynamical analysis of the system in a phase plane diagram showed that waxing and waning oscillations arose
when I, entrained the system alternately between stationary and oscillating branches.

INTRODUCTION

The thalamus is central to the generation of oscillatory ac-
tivity during slow wave sleep. Two types of rhythmical ac-
tivities of the electroencephalogram have been characterized,
spindle waves (7-14 Hz) and delta waves (0.5—4 Hz). Spindle
waves depend on both intrinsic and network mechanisms in
the thalamus (Steriade and Deschenes, 1984; Steriade and
Llinas, 1988). Until recently (Steriade et al., 1990) delta
waves were assumed to originate in the cortex. However, a
recent study conducted in cat in vivo (Currd Dossi et al.,
. 1992; Nunez et al., 1992) showed that the thalamus can gen-
erate spontaneous oscillations of 0.5-4 Hz even after sev-
ering its connections with the cortex, which suggests an im-
portant thalamic contribution in the genesis of delta waves.

In vitro experiments on thalamocortical (TC) cells have
demonstrated an intrinsic low-threshold Ca®* spike (Jahnsen
and Llinas, 1984a) and a tendency to oscillate. Cat and rat
TC neurons display spontaneous slow oscillations in the delta
range (Haby et al., 1988; Leresche et al., 1990, 1991;
McCormick and Pape, 1990a) which are resistant to tetro-
dotoxin and therefore due to mechanisms intrinsic to the cell.
These slow oscillations have also been called “pacemaker
oscillations” (Leresche et al., 1990, 1991).

A waxing and waning oscillation was also found in cat TC
cells in vitro (Leresche et al., 1990, 1991). These oscillations
are composed of periods of 1.5-28 s of 0.5-3.2-Hz oscilla-
tion that wax and wane, separated by silent phases of 5-25-s
duration. They are resistant to tetrodotoxin and are caused by
mechanisms intrinsic to the TC neuron. By analogy with the
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waxing and waning of in vivo spindles, they have been called
“spindle-like oscillation” (Leresche et al., 1990, 1991). How-
ever in vivo spindles occur at a higher intraburst frequency
(7-14 Hz) and depend on interactions with neurons of the
thalamic reticular nucleus (Steriade and Deschenes, 1984;
Steriade et al., 1985, 1987, 1990), so they are quite different
from the waxing and waning slow oscillations studied here.

Electrophysiological investigations of the ionic mecha-
nisms responsible for the intrinsic properties of TC neurons
have revealed the presence of a low-threshold Ca?* current,
It, responsible for the generation of low-threshold spikes
(LTS) following hyperpolarization (Deschenes et al., 1984;
Jahnsen and Llinas, 1984b). More recently, voltage-clamp
studies of this current in TC cells (Coulter et al., 1989;
Crunelli et al., 1989; Huguenard and Prince, 1992) charac-
terized the kinetic properties of I and the characteristic ac-
tivation of this current in the subthreshold region of the mem-
brane potential.

A mixed Na*/K™* current, I, responsible for anomalous
rectification, has also been identified in TC neurons stud-
ied in vitro (McCormick and Pape, 1990a; Pollard and
Crunelli, 1988). The voltage-clamp technique has revealed
that I, is activated by hyperpolarization in the subthreshold
range of potentials (McCormick and Pape, 1990a; Soltesz
et al., 1991). This current was also shown to be involved
in the generation of the slow oscillations of TC neurons (Mc-
Cormick and Pape, 1990a; Soltesz et al., 1991) as well as in
the state control of TC neurons by several neuromodulatory
systems (McCormick and Pape, 1990a; McCormick and
Williamson, 1991; Pape, 1992). The regulation of I, can also
control the transition between slow oscillations and waxing
and waning oscillations in cat TC cells (Soltesz et al., 1991).

The purpose of the present paper is to investigate possible
ionic mechanisms underlying the waxing and waning oscil-
lations observed in single TC cells in vitro using a model of
the TC neuron. The kinetic mechanisms in the model are
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based on voltage-clamp data of It and I;,. Special emphasis
is given to uncovering the role of I}, in organizing the tran-
sitions between multiple oscillatory and resting states of the
TC cell.

MATERIALS AND METHODS

Our single compartment model of a TC cell used a Hodgkin-Huxley-type
scheme (Hodgkin and Huxley, 1952) for the ionic currents. The equation
describing the derivative of the membrane potential V was:

CoV=-g(V-E) -~ I - Ix+I,, @)

where C,, = 1 pF/cm? is the specific capacity of the membrane, g = 0.05
mS/cm?, and E;. = -86 mV are, respectively, the leakage conductance and
the leakage reversal potential. The value of g; was chosen to obtain a mem-
brane time constant of 20 ms, and E; was adjusted to match the resting
membrane potential to —60 mV (Jahnsen and Llinas, 1984a) when I,
was present, and to more hyperpolarized levels, when I, was blocked
(McCormick and Pape, 1990b). The total membrane area was assumed to
be 1000 wm?, the area of a typical TC cell soma. Dendrites were not taken
into account.

Only currents absolutely necessary to generate subthreshold oscillations
were included in the model. These currents were the low-threshold Ca?*
current It, the hyperpolarization-activated current I, and the voltage-
dependent K* current I». I, represents the external current applied to the
cell. Other Na* and K* currents, such as the I, and Ik responsible for the
generation of action potentials, /5, Inap, OF Ic were not included in the model
(for details on these currents see McCormick and Huguenard, 1992).

Kinetic models have been developed previously for I+ (Huguenard and
McCormick, 1992; Wang et al., 1991), for I}, (Destexhe and Babloyantz,
1993; Huguenard and McCormick, 1992), and Ik, (Huguenard and Mc-
Cormick, 1992). We use them as our starting point.

The low-threshold Ca2* current I+

Voltage-clamp experiments (Coulter et al., 1989; Crunelli et al., 1989) show
that the dynamical properties of It can be accounted for by a Hodgkin-
Huxley-type formalism. A four-variable model of this low-threshold current
was recently proposed by Wang et al. (1991) and will be used here. The
kinetic equations read:

I = —gm*h(V — E,)

1
m= — [m

—gylm = ]
h=e,(l1 ~ h — d ~ K(V)h]

d=a,(MKV)(1 — h —d) - d],

where gc, = 1.75 mS/cm? is the maximum value of the conductance of the
Ca?* current and E, is the Ca2* reversal potential (in the presence of Ca?*
diffusion, Ec, was calculated from the Nernst relation, and was taken as Ec,
= 120 mV otherwise). In this kinetic scheme, m is the activation and 4 and
d are two inactivation variables. The variable d accounts for the slow re-
covery of It from inactivation (Wang et al., 1991). The various functions
used here are listed in Table 1.

@

The hyperpolarization activated current /,,

Voltage-clamp studies on thalamocortical neurons (McCormick and Pape,
1990a; Soltesz et al., 1991) have shown that I}, is a noninactivating current
that activates slowly. This current is carried by both Na* and K* ions, and
its reversal potential lies between Ey, and Ex (McCormick and Pape,
1990a). I, activates in the same subthreshold range of membrane potentials
as IT.
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TABLE 1 Activation functions and time constants for the
voltage-dependent currents I+, /,,, and /.

Current  Variable Function
It m ma(V) = 1/{1 + exp[~(V + 65)/7.8]}
Tm(V) = 0.15mo(V){1.7 + exp[-(V + 30.8)/13.5]}
h a,(V) = exp[—~(V + 162.3)/17.8)/0.26
K(V) = \/0.25 + exp[(V + 85.5)/6.3] — 0.5
d (V) = V{n(V)[K(V) + 1]}
(V) = 62.4/{1 + exp[(V + 39.4)/30]}
I S, F1 Ho(V) = 1/{1 + exp[(V + 68.9)/6.5]}
S (V) = exp[(V + 183.6)/15.24]
(V) = exp [(V + 158.6)/11.2)/
F, {1 + exp[(V + 75)/5.5]}
I, m2 Mawvy = 1/{1 + exp —[(V + 43)/17]}
Tm2(V) = 2.86 + 0.29/{exp[(V — 81)/25.6]
+ exp[—(V +132)/18]}
hy, by ha(V) = 1/{1 + exp[(V + 58)/10.6]}
hy (V) = 34.65 + 0.29/{exp[(V — 1329)/200}
+ exp[—(V + 130)/7.1]}
h, T2o(V) = 1,1(V) for V= -70 mV

Tr2(V) = 2570 ms for V< —70 mV

These functions were chosen to fit voltage-clamp measurements of these
currents. All values were scaled to a temperature of 36°C assuming Qo
values of 5 and 3 for I (Coulter et al., 1989), and of 2.6 for I, (Huguenard
and Prince, 1991). The screening charge effect was calculated assuming an
extracellular Ca?* concentration of 2 mM.

Recently, a kinetic scheme for I;, was introduced to account for the kinetic
properties of I;, (Destexhe and Babloyantz, 1993). Two distinct activation
gates were assumed, namely F (fast activation) and S (slow activation)
according to the following kinetic scheme:

as aF
Sclosed = Sopen F closed = F, open?> (3)
Bs BF

where Sciosea and Fjoseq TEpresent the closed states of the slow and fast

activation gates of I, Sopen and F o, represent the open states of these gates,

and a5, Bs, aF, and B are voltage-dependent rate constants (see below).
The corresponding kinetic equations are:

I, = §S,F (V- E)
S, = a;(V)S, — Bs(V)S, @
Fl = aF(V)Fo - ﬁF(V)FU

where g, is the maximal conductance of I, (in mS/cm?), E;, = -43 mV is
the reversal potential of I;, (McCormick and Pape, 1990a), So = 1 - S;, and
Fo,=1-F,.5and F, represent the fraction of activation gates in the closed
state, whereas S; and F; are the fraction of activation gates in the open state.
The conductance of I, is always proportional to the product S;F,; in this
model.

The rate constants are related to the activation function H.(V) and the
time constants 75(V) and (V) by the following relations: as = He/Ts,
Bs = (1 = H.)/1s, ap = Hu/7r and Br = (1 - Ha)/7e. The activation
function H.(V) was chosen so that H2 fit the data of McCormick and
Pape (1990a) (see Table 1). The time constants 7« V) and 75(V) (given in
Table 1) were estimated from numerical simulation of voltage-clamp pro-
tocols (see Results).

Regulation of /, by intracellular Ca2*

Two plausible ionic mechanisms which produce waxing and waning os-
cillatory behavior are presented in Results. One possibility, initially pro-
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posed by McCormick (1992), is the regulation of I, by binding of intra-
cellular Ca?*, as found in whole cell voltage-clamp studies of I, in sino-
atrial node cells (Hagiwara and Irisawa, 1989). Evidence for the control of
the voltage-dependent properties of I, by intracellular Ca%* were also ob-
tained in cat neocortical neurons (Schwindt et al., 1992). As the Ca?* de-
pendence of I, has not yet been studied in TC cells, it was assumed to be
similar to that of sino-atrial node cells.

The activation curve of I, in sino-atrial node cells shifts toward morg
positive potentials as the intracellular Ca2* concentration ([Ca);) is in-
creased (Hagiwara and Irisawa, 1989). Calmodulin and protein kinase C
were not involved in the Ca?* modulation of I, suggesting that Ca®>* ions
directly affected I, channels (Hagiwara and Irisawa, 1989). There is also an
increase of the conductance of I, following the binding of Ca?*. We have
developed a kinetic model for intracellular calcium (Ca?*) binding to the
open channels of I, that is consistent with these data. The open state gates
Sopen and Fp., were assumed to have n binding sites for CaZ* which, when
occupied, lead to the open forms Syoung and Fyoung according to:

k1
24

Sopen T 1CaT = Spoung
2

®

k1
Fopen + nCal* = F g
k2
where k; and k, are the forward and backward rate constants for Ca2*
binding.
If S, and F, represent the fraction of gates bound to calcium, then, com-
bining Eqs. 3 and 5, one obtains the following kinetic equations for I:

I, = (8, + S,)(F, + F,)(V — E,)
8, = as(M)S, — Bs(V)S, + k,[S, — CS,]
Fy = ap(V)Fy — Br(V)F, + k[F, — CS,] ®)
$,= —k[S, - CS]
F,= —k[F, - CF)),

where So =1 -8, -85, Fp = 1 - F; - F,, C = ([Ca)/Cac)", and as, Bs,
ar, and B were obtained from H., and 75 as before. The number of binding
sites was n = 2 in all of our simulations. We assumed k; = k,/Ca”, =
5 X 10~* mM is the critical value of [Ca]; at which Ca?* binding on I,
channels is half-activated (if [Ca); << Ca,, the effect of Ca?* is negligible;
see Results for the estimation of this parameter from voltage-clamp data).
k2 = 4 X 10~* ms~! is the inverse of the time constant of Ca?* binding on
I, channels. These values were chosen to match the slow time course with
which 7, is modulated by intracellular Ca2*.

Influx and efflux of Ca2*

The dynamics of intracellular Ca?* were determined by two contributions:

(i) Influx of Ca?* due to I

Ca2* ions enter through I channels and diffuse into the interior of the cell.
Only the Ca®* concentration in a thin shell beneath the membrane was
modeled. The influx of Ca?* into such a thin shell followed:

. k
[Ca]i = - Z—FE ITy (7)

where F = 96489 C mol~' is the Faraday constant, d = 1 um is the depth
of the shell beneath the membrane, and the unit conversion constant is k =
0.1 for It in pwA/cm;, and [Ca); in millimolar.

(ii) Efflux of Ca2* due to an active pump

In a thin shell beneath the membrane, Ca2* retrieval usually consists of a
combination of several processes, such as binding to Ca2* buffers, calcium
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efflux due to Ca®* ATPase pump activity and diffusion to neighboring shells.
Only the Ca?* pump was modeled here. We adopted the following kinetic
scheme:

<1 [x]
Ca?* + P=CaP — P + Ca?*, ®)

2
where P represents the Ca* pump, CaP is an intermediate state, Ca2* is the
extracellular Ca?* concentration, and c;, ¢, and c; are rate constants. Ca2*
ions have a high affinity for the pump P, whereas extrusion of Ca?* follows
a slower process (Blaustein, 1988). Therefore, c; is low compared to ¢, and
3, and the Michaelis-Menten approximation can be used for describing the
kinetics of the pump. According to such a scheme, the kinetic equation for
the Ca?* pump is:

K;[Ca);

[Ca) = - [Cal + K, )

where Kt = 10~ mM ms! is the product of ¢5 with the total concentration
of P, and K4 = cy/c; = 10~* mM is the dissociation constant, which can be
interpreted here as the value of [Ca]; at which the pump is half activated (if
[Ca)i < Kj then the efflux is negligible).

The parameters of the pump were adjusted in order to have a fast Ca?*
removal, based on an estimation made from the time course of the spike after
hyperpolarization in TC cells (McCormick and Huguenard, 1992). Slow
Ca2* handling is unlikely since Ca?*-dependent channels would detect a
slow Ca?* accumulation in TC cells.

The extracellular Ca?* concentration was [Ca), = 2 mM as found in
vivo. The change of [Ca); due to the binding of Ca2* to I, channels was
negligible and was neglected, as was the contribution of Ca?* efflux to the
net Ca?* current in Eq. 7.

The Ca2* reversal potential strongly depends on the intracellular Ca2*
concentration, and was calculated according to the Nernst relation:

,RT  [Ca],

Ec,1 =k ﬁlog[c_a]i’

(10
where R = 8.31 J mol™! K-, T = 309° K, and the constant for unit con-
version is k' = 1000 for Ec, in mV. For [Ca); = 2.4 X 10~* mM, which is
an average value at rest in the simulations presented here, Ec, was
approximately 120 mV.

Slow K* current /x»

A second plausible ionic mechanism for the generation of waxing and wan-
ing oscillations depends on the interaction between three ionic currents,
namely Ir, I, and a slow outward current. Different types of K* currents
have been recently identified in TC cells (Budde et al., 1992; Huguenard and
Prince, 1991; McCormick, 1991). Among these, a slowly inactivating K*
current activated by depolarization was characterized and termed Ik, by
Huguenard and Prince (1991). They reported that this current inactivates
very slowly with two time constants (around 250 ms and 3 s). A very similar
current was found in TC cells in the lateral geniculate nucleus (McCormick,
1991). A kinetic model for this current was proposed by Huguenard and
McCormick (1992):

Iy = 8xamy(0.6h, + 0.4h,)(V — E,)

1
m, = — m(mz - Myuy) an
. 1
e nm B )
1
SN

where gk, is the maximum value of Ik, conductance and Ex = -90 mV is
the reversal potential for K* ions. The activation function and the time
constant of the activation variables m,, k;, and h, are given in Table 1.
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Estimation of the values of parameters

Conductances values and reversal potentials for the above currents were
estimated from published values provided by measurements in vitro. How-
ever, these data only provide approximate values for these parameters. Also,
the complex dendritic geometry of the cell was not taken into account, which
would affect these values. For each of the currents considered here, the value
of the maximal conductance and the reversal potential are interrelated. For
example, if E;, is increased, g, must be decreased to reproduce similar re-
sults. We tested a broad range of maximal conductances and similar results
were obtained.

Methods for solving the equations

Exploration of the behavior of the system over a large range of values of
the parameters was performed using programs developed specifically for the
purpose of this paper, or by using the NEURON simulator (Hines, 1989,
1993). The solutions were obtained by direct integration of the differential
equations using a fifth order, variable-step integration subroutine, provided
by the CERN library (MERSON D208: accuracy of 10~3-10-%, minimal
step reached 10~1-10~3 ms). These solutions were rigorously identical to
those obtained from the NEURON simulator (Euler integration, minimal
step of 10-1-10-2 ms).

The stationary states of the system (see Results) were calculated ana-
lytically, and the equations obtained were solved numerically by using a
Newton-Raphson algorithm (Press et al., 1986). A confirmation of the value
of the stationary state was also provided by direct integration of the dif-
ferential equations.

The programs written for the purpose of this paper and the NEURON
simulator were run on UNIX workstations (SONY NWS 3410 and MIPS
3000), and the typical time taken by a simulation of 10 s was of the order
of 8-16 s CPU time.

RESULTS

TC cells exhibit several types of slowly oscillating states in
the subthreshold range of potentials (-60 to —80 mV). These
oscillations were based on interactions between subthreshold
currents, such as the low threshold Ca?* current It and the
hyperpolarization-activated current . In particular, the
mechanisms proposed here depend strongly on the kinetic
properties of I;,. The parameters for I;, in our model were
adjusted to fit voltage-clamp data.

Ca?* and voltage-dependent activation of /;,

The activation function of I, at equilibrium as a function of
the membrane potential and the intracellular Ca%>* concen-
tration is, from Eq. 6:

H_(V,[Ca]) =

1+¢c

~[miree] @

where C = ([Ca]i/Cacir)", Ho(V)? = Hw(V, [Ca]; = 0). The
activation function H.(V, [Ca];) was determined from
voltage-clamp measurements of TC neurons (McCormick
and Pape, 1990a), and the parameters of H..(V) were chosen
to fit as closely as possible these data (Fig. 1 B, solid line).
Whole cell voltage-clamp experiments (Hagiwara and
Irisawa, 1989) on sino-atrial node cells have shown that in-
creasing intracellular Ca®>* produces a shift of the activation

[y + S,)(F, + Fy)l,,
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I}, Activation
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Membrane potential (mV)

FIGURE 1 Ca?*-induced shift of the activation function of I,. (A)
Schematic diagram illustrating the currents in the model. The low-
threshold Ca2* current (/1) lets Ca®* ions enter the cell; these ions bind
to the mixed Na*/K* channel 1, and modify its voltage-dependent prop-
erties. (B) Direct binding of intracellular Ca?* to I, channels shifts the
voltage dependence of the current toward positive membrane potentials.
H(V, [Ca;]) is represented as a function of the membrane potential V for
different values of [Ca];. The activation function at resting level of [Ca];
(solid line: C = 0) was estimated from voltage-clamp experiments
(McCormick and Pape, 1990a) on TC cells (+ symbols). For increasing
concentrations of intracellular Ca2*, the activation function shows pro-
gressively larger shifts toward positive membrane potential (dashed lines,
C = 1and C = 10). C = ([Ca}y/Cacir)>

function of /;, toward more positive membrane potentials.
Using patch pipettes containing various concentrations in
Ca?*, the shift was around 13 mV for the highest concen-
trations in Ca?* used.

These data can be accounted for by a kinetic scheme where
intracellular Ca®* directly binds to the I;, channels (see Fig.
1 A and Materials and Methods). The activation function
H.(V, [Ca);) progressively shifts toward positive membrane
potentials as the value of C increases (Fig. 1 B).

The shift at half-activation of 1}, is obtained by substituting
H.(V, [Ca];) = 0.5 into Eq. 12, to obtain:

Vi, = —689 + 6.5[log(\/2 — 1) log(C + 1)]

[Ca]; \"
—-75+ 6.5 logl:(a> + 1]. (13)

crit

R
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The shift of the [, activation logarithmic in [Ca); and a shift
of 13 mV is obtained for C = 6.4.

The shift should be negligible (C < 1) at the resting level,
[Ca]; ~ 2 X 10~* mM, which gives a lower bound: Ca.;; >
2 X 10~ mM. During activation of I, the value of [Ca]; just
beneath the membrane increases to about 1072-10~3 mM and
shifts I, by a few millivolts (C > 1), which gives an upper
bound: Cay < 1072-1072 mM. In the simulations presented
here, we chose n = 2 and Cag; = 5 1074 mM.

Kinetics of /,,

I, activates very slowly and its time constant can be greater
than 1 s at 3-6°C (McCormick and Pape, 1990a; Soltesz
et al., 1991). The time course of I, activation may differ
considerably from the time course of deactivation at the same
membrane potential. Currents similar to /;, in other prepa-
rations also show very slow activation and, in some cases, a
faster time course for deactivation (for recent studies on 7y,
see Erickson et al., 1993; Galligan et al., 1990; Kamondi and
Reiner, 1991; Uchimura et al., 1990; van Ginneken and
Giles, 1991; and references therein).

Despite the different time constants for activation and
deactivation, I, follows a single exponential time course,
which would suggest a simple description involving first
order kinetics. However, in a simple first-order kinetic
scheme, the time constant of activation is identical to that
of deactivation.

A novel kinetic scheme was proposed (Destexhe and
Babloyantz, 1993) to account for these apparently conflicting
experimental data (see Materials and Method). We assume
that the permeability of I, channels depends on two inde-
pendent gates (S for slow activation and F for fast activation)
which must be opened simultaneously.

This model exhibits two time constants. Following a de-
polarizing voltage jump, the two gates S and F, which are
initially closed, begin to activate: the fast variable F, rap-
idly increases to its equilibrium value, whereas S; reaches
the same value more slowly. Since I, is proportional to the
product S, F, the time course of the measured current will
reflect the activation kinetics of the slow variable S, (Fig.
2 A). The opposite occurs upon a hyperpolarizing voltage
jump from a depolarized level where both gates were ini-
tially open: F, rapidly closes, while S; closes more slowly.
Since the decrease of F, immediately decreases I, the
time course of deactivation follows the kinetics of the fast
variable (Fig. 2 B).

Although in our model for [, the current is a product of
two exponentials (Eq. 4), the two time constants were suf-
ficiently different that the time course of the current was
practically a single exponential. This could explain the
single exponential curves observed from voltage-clamp ex-
periments of I,

The slow time constant, 75(V), was chosen by an expo-
nential fit of voltage-clamp measurements of the time
constants of activation, whereas the fast time constant,
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7«(V), was fit by a bell-shaped function from measure-
ments of the deactivation time constants (see Fig. 2 C and
Table 1).

Simulation of voltage-clamp experiments using these
functions produced curves and measurements indistinguish-
able from those obtained by McCormick and Pape (1990a)
(Fig. 2 C). In particular, the double activation scheme for I,
deactivates faster than it activates (Destexhe and Babloyantz,
1993).

In the next section, regulation of I, by Ca?* is introduced
and its interactions with other currents examined.

Oscillatory behavior from Ca?*-regulated /,,

Previous models of TC cells have shown that the interaction
between It and I, supports slow oscillations in the delta range
0.5-4 Hz (Lytton and Sejnowski, 1992; McCormick and Hu-
guenard, 1992; Toth and Crunelli, 1992a). We demonstrate
here that this slow oscillation can wax and wane as a result
of the interaction between the two subthreshold currents It
and I, and the regulation of I, by intracellular Ca®*.

The double activation model of I, combined with It can
give rise to a variety of resting states and slow oscillations.
These patterns were obtained for different values of the maxi-
mal conductance gy, of I, (Fig. 3). For the lowest values of
&n (< 0.01 mS/cm?), the model remained in a hyperpolarized
resting state at about -84 mV (Fig. 3 A). A similar hyper-
polarized resting state has been observed in vitro
(McCormick and Pape, 1990a; Soltesz et al., 1991) after
blockage of I;,.

For the highest values of this conductance (g, > 0.1mS/
cm?), there was a more depolarized resting state (around —58
mV) close to firing threshold (Fig. 3 D). The depolarized
resting state was similar to that observed in vitro following
the enhancement of I;, by noradrenaline and probably cor-
responds to the “relay state” of TC neurons (McCormick and
Pape, 1990a; Soltesz et al., 1991).

For moderate values of g, various types of slow oscilla-
tory behavior were observed. In the range of g, between
0.0018 and 0.02 mS/cm?, there was a regular slow oscillation
of 0.5-3.5 Hz (Fig. 3 B) similar to the slow oscillatory be-
havior recorded in TC cells in vitro (McCormick and Pape,
1990a).

For somewhat higher values of g, (between about 0.02 and
0.09 mS/cm?), waxing and waning oscillations appeared
(Fig. 3 C) that consisted of bursts of slow oscillations (typi-
cally lasting a few seconds at frequency of 3.5-4 Hz with
faster components at 8-9 Hz) separated by a silent phases
lasting about 4-20 s. Such bursts of slow oscillations (0.5—
3.2 Hz) separated by silent phases (5-25 s) have been re-
corded in cat TC cells in vitro (Leresche et al., 1990, 1991).

Properties of Ca?*-dependent waxing and waning
oscillations

Soltesz et al. (1991) showed that slow oscillations and wax-
ing and waning oscillations observed in cat TC cells are two
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FIGURE 2 Activation and deactivation kinetics of I,,. (A) Simulation of voltage-clamp protocols of activation of I;,. (a) From an initial holding value
of -55 mV, the voltage was clamped at various levels (from -105 to =70 mV) for 4 s, then clamped again to —-55 mV. (b) Time course of the current compared
to the gating variables. During this activation protocol (initial voltage of =30 mV, current recorded after clamping to -50 mV at ¢ = 0) the current follows
the time course of the slow variable S;. A time constant of about 3 s was estimated from fitting a single exponential to the current trace. (B) Simulation
of protocols of deactivation of 1. (a) The voltage was clamped at —105 mV for 4 s, then clamped to various levels from -85 to —55 mV. (b) Time course
of the current and gating variables. In this case, although the voltage was clamped to the same value as in Ab (initial voltage of -110 mV and clamp to
-50 mV at ¢ = 0), the current followed the time course of the variable F; and a smaller time constant of about 180 ms was measured. (C) Time constants
for activation and deactivation of 1, as a function of the membrane potential. The time constants obtained by single-exponential fitting of the currents illustrated
above for activation (filled triangles) and deactivation (open triangles) were compared to the measurements obtained by McCormick and Pape (1990a)
during activation ( filled circles) and deactivation (open circles). Solid lines represent the functions fit to these data (given in Table 1). Adapted from Destexhe
and Babloyantz (1993).

states in a continuum and that the transition from slow os-  depolarization that was most clearly seen by averaging the
cillations to waxing and waning type of rhythmicity couldbe =~ membrane potential (Fig. 4 C).
achieved by enhancement of I,. The same sequence of os- The time courses of the different variables of the model
cillations was observed here as I}, was enhanced in the model ~ during a waxing and waning sequence are displayed in Fig.
(Fig. 3). Other properties of in vitro waxing and waning os- 5. The membrane hyperpolarized slowly during the silent
cillations include a characteristic hyperpolarization during  phase until /T deinactivated and the oscillations began. Dur-
the silent phase and their transformation into slow oscilla-  ing the burst of slow oscillations, Ca?* entered transiently at
tions by a depolarizing current step. These properties were  the peak of each spike and bound progressively to Iy, channels
also present is our model (Fig. 4, A and B). (reflected in the slow increase of S, and F,). Ca?* binding

The transition from waxing and waning oscillation to slow  to I; channels shifted the I, activation curve, producing a
oscillations from a depolarizing current step was not ob-  gradual depolarization during the oscillatory phase (Fig. 4
served for all values of g,. For some values of 3, the opposite ~ C). This depolarization prevented It from activating and
was observed: waxing and waning oscillations were trans-  damped the slow oscillations. During the ensuing silent
formed into slow oscillations by applying a hyperpolarizing  phase, S, and F, slowly decreased and caused the membrane
current step (not shown). to hyperpolarize.

There was a progressive hyperpolarization during the si- The progressive transformation of slow oscillations into

lent phase (Fig. 4 B). During the burst there was a gradual =~ waxing and waning oscillations is shown in Fig. 6. A bifur-
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cation occurred around g, = 0.02 mS/cm? from slow oscil-
lations to a state where the slow oscillations were interrupted
by short silent phases (Fig. 6 B). As gy, increased, the length
of the silent phase increased and the bursts became shorter
(Fig. 6, C and D). The frequency inside the oscillatory phase
was always comparable to that of the slow oscillations.
The duration of the silent phase and the oscillatory
phase as a function of g, are reported in Fig. 7 A. The si-
lent phase ranged from 4 to 20 s and decreased with gy,.
The oscillatory phase became shorter with increase of g,
In the limit, as g, decreased to 0.02 mS/cm?, the duration
of oscillatory phase tended to infinity. The opposite oc-

A

FIGURE 4 Properties of Ca®*-dependent waxing and
waning oscillations. (A) Transformation of waxing and
waning oscillations into slow oscillations by application
of a depolarizing current step of 0.05 pA/cm? (arrow).
& = 0.04 mS/cm?. (B) Waxing and waning oscillations
at high amplification showing the slow hyperpolariza-
tion of the membrane during the silent phase. g, = 0.04
mS/cm?. (C) Average membrane potential showing a
progressive depolarization during the oscillatory phase.
Each point was obtained by averaging the membrane C
potential over a period of 500 ms. g, = 0.025 mS/cm?2.

Membrane potential (mV)

curred as the depolarized state was approached, with oscil-
latory phase reducing to a minimum length before disap-
pearing (sometimes a low amplitude periodic oscillation
was seen in a very narrow range of g, before the depolar-
ized state appeared). The period of the slow oscillation de-
creased with g, (indicated by S in Fig. 7 A), which is con-
sistent with the slowing down of the slow oscillation
observed after progressive blockage of I;, channels by ce-
sium (McCormick and Pape, 1990a).

The length of the silent phase and of the oscillatory phase
were directly proportional to the time constant of intracel-
lular Ca®* binding to I, channels, k' (Fig. 7 B). This is

-68
I 70

12

13 14 15

Time (s)
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consistent with the assumption that the binding of Ca?* is
critical for the onset and termination of the oscillatory phase.
The silent phase, which depends on the return of S, and F,
to their resting values, is expected to be proportional to
k; 1. The length of the oscillatory phase, which depends on
the rate of rise of S, and F», is also expected to be propor-
tional to k5 1.

Ixo-dependent waxing and waning oscillations

The Ca?*-dependent regulation of I,, is not the only way to
obtain waxing and waning oscillation with It and ;. A sec-
ond possible mechanism depends on the interaction among
It, I, and the slow K™ current Ix,. Ca®>* mechanisms were
not included in this version of the model.

It was reported previously (Destexhe and Babloyantz,
1993) that the double activation model of I}, showed the same
sequence of oscillatory states as in vitro experiments when
combined with It and Ix,. This model was explored using
different values for some of the parameters. Characteristic
properties of waxing and waning oscillations, such as the
progressive hyperpolarization during the silent phase and the
transformation into slow oscillations by applying a depolar-
izing current step, were also observed is this model (Fig. 8).

Fig. 9 shows the time course of several gating variables
during a waxing and waning sequence. As in the mechanism
proposed by Soltesz et al. (1991), I, activates more and more

Modeling Thalamic Slow Oscillations

1545

during each cycle of the oscillatory phase. The resulting de-
polarization inactivates It and the oscillations damp.

Compared with the Ca?*-dependent waxing and waning
oscillations, the slow depolarization of the membrane dur-
ing the oscillatory phase in the Ix,-dependent model is
provided by a more pronounced I, activation (S; reaches
its maximal value during the oscillatory phase) and inacti-
vation of Ix,. Progressive deactivation of I, then hyperpo-
larizes the membrane.

Waxing and waning oscillations were never observed
without adding a slow depolarization-activated outward cur-
rent in addition to It and [;,. Similar oscillations were ob-
served when I, was replaced by slow K™ currents, such as
the slow Ca2*-activated K* current or a depolarization-
activated noninactivating K* current similar to the musca-
rinic current Iy; (not shown). However, these currents are
probably not present in TC cells.

Singular approximation of waxing and waning
oscillations

Instead of studying the mechanisms of waxing and waning
oscillations in terms of activation variables and Ca2* con-
centration, it is possible to describe these oscillations as dy-
namical states of the system. This provides a more global
view of “stationary states” or “limit cycle oscillations” of the
system. Complex oscillatory processes, such as oscillations

S,
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FIGURE 5 Time course of the gating variables of I, during Ca?*-dependent waxing and waning oscillations. (A) Slow activation variables S, and S,.
(B) Fast activation variables F; and F,. (C) Intracellular Ca?* concentration [Ca];. (D) Membrane potential V. g, = 0.04 mS/cm?. Same parameters as

in Fig. 3 C.
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FIGURE 6 Transformation from slow oscillations to waxing and waning oscillations. The pattern of oscillations is shown for four values of g;. (A) slow
oscillations (g, = 0.02 mS/cm?). (B) A short silent phase interrupted the slow oscillation (g, = 0.021 mS/cm?). (C) Oscillations with a longer silent phase
gn = 0.025 mS/cm?). (D) For larger values of gy, the silent phase became more prominent (g, = 0.05 mS/cm?).

that wax and wane, usually result from several oscillatory or
stationary states. In this section, the dynamical states un-
derlying waxing and waning oscillations are studied using a
singular approximation method that identifies the origin and
the transitions between these states.

Singular approximation is used in nonlinear dynamics
to separate fast and slow subsystems (Pontryagin, 1961;
Zeeman, 1973). Slow variables can be treated as slowly vary-
ing parameters and the rest of the system can then be studied
as a function of these new parameters. This approximation
has been successfully used to uncover the dynamical mecha-
nisms underlying bursting oscillations in models of several
biological systems (Rinzel, 1987).

We have applied this method to our model of waxing and
waning oscillations. In Fig. 5, the gating variables S, and F,
evolved according to a slower time scale than the other vari-
ables. In the case of Ix,-dependent waxing and waning os-
cillations (Fig. 9), S; and h, were the slow variables.

Let S, be a slowly varying parameter in the Ca®*-
dependent model. In contrast, F, only displays small varia-
tions of amplitude and therefore has a less prominent role

than S,. As before, Eq. 6 was used for Ca*-dependent wax-
ing and waning oscillations, except that S, was assigned a
constant value. In Fig. 5 A, since the variable S, oscillates
approximately between 0.09 and 0.65, the same interval of
values will be used for S, treated as a parameter.

Over this range of values, the system showed either a
stable resting state or limit cycle oscillations (Fig. 10 A). For
the smallest values of S,, the system exhibited slow oscil-
lations at a frequency of about 3.5 Hz, whereas for the highest
values of the parameter S,, the system exhibited a stable
stationary state close to the depolarized resting state of Fig.
3 (around -57 mV).

The transition point between limit cycle oscillations and
stable stationary state is called a Hopf bifurcation (Gucken-
heimer and Holmes, 1986; Rinzel and Ermentrout, 1989). In
some cases, the stable solutions overlap, and the bifurcation
is called subcritical. In our system, this transition has the
typical structure of a subcritical Hopf bifurcation. First, the
amplitude of the limit cycle at the bifurcation point changed
abruptly and there was no decline in amplitude. Second, in
some range of values of the parameter S, (about 0.225-0.42),
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FIGURE 7 The period of Ca?*-dependent waxing and waning oscilla-
tions depends on the maximal conductance of /;, and the time constant of
Ca?* binding to I, channels. The length of the silent phase (SP) and the
length of the oscillatory phase (OP) are shown as a function of these two
parameters. (A) Period as a function of the maximal conductance of I, (gn).
The range of values of g, corresponding to slow oscillations (period labeled
by §), waxing and waning oscillations and depolarized resting state are also
indicated. (B) Period as a function of the time constant (k; *) of intracellular
Ca?* binding on I}, channels. The inverse of the rate ; is the time constant
for Ca?* binding.
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the stable limit cycle coexisted with the stable stationary state
(Fig. 10 B). The state of the system within this interval of S,
depended on its previous history.

Thus, in a waxing and waning sequence, S, oscillates be-
tween values which drive the system alternately between
stable stationary states and slow oscillations. As shown by
Fig. 10 B, the waxing and waning oscillations are driven
around a hysteresis loop by the slow oscillations of S,, as
depicted by dotted arrows: as S, decreases during the silent
phase, the membrane potential hyperpolarizes slowly and
follows the stable stationary state branch (arrow I). As the
critical point is reached, the stationary state loses its stability
and the system jumps to the oscillating branch (arrow 2). S,
then starts to increase and follows the oscillating branch,
while the amplitude of the oscillations decreases (arrow 3).
The limit cycle oscillations lose stability and the system
jumps back to the stationary branch (arrow 4). The oscil-
lations damp and the silent phase starts again.

The trajectory of a simulated waxing and waning oscil-
lation plotted in a V/S, diagram, shown in Fig. 10 D, alter-
nates between an oscillating and a stationary branch in a
manner very similar to that in Fig. 10 B. The position of the
oscillating and stationary branches seems to be slightly dif-
ferent from the solutions displayed in Fig. 10 B, but the struc-
ture remains the same. Waxing and waning oscillations with
a longer oscillatory phase (see Fig. 6) correspond to a very
similar trajectory, with an increased number of loops near the
end of the oscillatory branch.

The same subcritical Hopf structure is still present for slow
oscillations, but the successive loops do not leave the os-
cillatory branch and the oscillation does not wax and wane.
A strong current pulse should, however, be able to make the
trajectory jump from the oscillatory branch to the stationary
branch. This prediction is borne out in Fig. 11, where a strong
depolarizing current step induced a sudden transition to a
silent phase during the slow oscillation (indicated by arrows
2 and 3 in Fig. 11 B) and the system returned back to the
oscillatory branch (arrow 4) along a single hysteresis loop.
Steps applied to S, resulted in the same type of behavior.

—_
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FIGURE 8 Properties of Ix,-dependent waxing and 5 -70
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a depolarizing current step of 0.24 pwA/cm, (arrow). g
(B) Waxing and waning oscillations at high amplifi- ..E
cation shows the slow hyperpolarization of the mem- I= B
brane during the silent phase. g, = 0.4 mS/cm?, gc, = 15}
1.75 mS/cm?. = ] _60
-61
20 40 60 80

Time (s)



1548 Biophysical Journal Volume 65 October 1993
S 0.5
1 ]
A 0.4
8 10 12 14
'.vnvA
B Fy 0.12
1o
8 10 12 12

C A

hl 04
aaaAAARARARRARRARKRANARARKARRANANR AR S my
8 10 12 14
D \"/
.\vnvﬁ W 60
1270
8 10 12 14
Time (s)

FIGURE 9 Time course of the gating variables of I;, and Ik, and the membrane potential during an Ix,-dependent waxing and waning oscillation. (A)
Slow activation variable S; of I,. (B) Fast activation variable F; of I},. (C) Activation (m,) and inactivation (h;, h,) variables of Ix,. (D) Membrane potential

V. g, = 0.4 mS/cm?.

The same analysis can be applied to the Ix>-dependent
waxing and waning oscillations, using S; as a parameter. The
Ix>-dependent waxing and waning oscillations were also
based on a hysteresis loop around a subcritical Hopf bifur-
cation (not shown). The trajectory in the V/S, diagram was
very similar to the Ca®*-dependent waxing and waning os-
cillations (Fig. 12).

DISCUSSION

Hodgkin-Huxley-type models of TC neurons were first in-
troduced by McMullen and Ly (1988) and Rose and
Hindmarsh (1989) based on the experiments of Jahnsen
and Llinas (1984a). More recent models of TC neurons
(Destexhe and Babloyantz, 1993; Lytton and Sejnowski,
1992; McCormick and Huguenard, 1992; Toth and
Crunelli, 1992a) take into account data from voltage-clamp
experiments. We have extended these models by incorpo-
rating a more accurate model of I, and have used it to
study the genesis of waxing and waning oscillations that
have been described in vitro (Leresche et al., 1990, 1991;
Soltesz et al., 1991).

The properties of /,, in voltage-clamp mode

The hyperpolarization-activated inward current I, is central
to the oscillatory properties of TC neurons (McCormick and
Pape, 1990a; Soltesz et al., 1991). First-order kinetic
schemes have been proposed for modeling I, in TC cells
(Huguenard and McCormick, 1992; Lytton and Sejnowski,
1992; Toth and Crunelli, 1992a), sino-atrial node cells
(DiFrancesco and Noble, 1985; vanGinneken and Giles,
1991) and stomatogastric ganglion neurons (Buchholtz et al.,
1992); however, they do not reproduce the slow component
of activation and the difference between activation and de-
activation kinetics.

The model of I;, adopted here (Destexhe and Babloyantz,
1993) has two activation variables with different kinetics and
accurately accounts for all the voltage-clamp data. Although
more complex models have been developed for modeling a
current similar to I}, in sino-atrial cells (DiFrancesco, 1985),
the model used here is relatively simple and explains how
slow activation can coexist with faster deactivation.

A Ca?* dependence of I;, was included based on voltage-
clamp measurements on sino-atrial node cells (Hagiwara and
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FIGURE 10 Singular approximation applied to the Ca?*-dependent model of waxing and waning oscillations. (A ) For extreme values of the slow variable
S, treated as a parameter, the system exhibited either slow oscillations (S> = 0.09) or a stable stationary state (S, = 0.65). Other parameters are the same
as in Fig. 3 C. (B) Bifurcation diagram of the system as a function of S,. During the slow oscillations of S,, the system alternated between a slow oscillatory
state and a resting state, tracing a hysteresis loop as shown in the diagram. The order of events underlying the waxing and waning sequence are indicated
by dotted arrows. Dashed lines represent unstable states (USS, unstable stationary state; ULC, unstable limit cycle), and continuous lines represent stable
states (SSS, stable stationary state; SLC, stable limit cycle). (C) Corresponding sequence of events in a single cycle of the waxing and waning oscillations.
(D) Trajectories of waxing and waning oscillations in the V/S, diagram. Here the full system was simulated without considering S, as a parameter. Dashed
lines represent the presumed position of oscillatory and stationary branches and dotted arrows depict the same sequence of events as in B.

Irisawa, 1989) and neocortical neurons (Schwindt et al.,
1992). These data suggest that intracellular Ca%* ions di-
rectly affect I, channels and shift the activation function to-
ward more depolarized potentials. We assumed that the Ca%*
dependence of I, is caused by direct binding of Ca2* ions on
the open form of I, channels (for a different model of this
shift in the context of TC cells, see Toth and Crunelli
(1992b)). Our model accounts for the positive shift of the
activation function of I,, with increased intracellular Ca?*
but not for the substantial increase of conductance. It should
be possible to verify the predicted logarithmic shift (Eq. 12)
from whole cell patch-clamp experiments.

Combinations of currents giving rise to waxing
and waning oscillations

The properties of waxing and waning oscillations (Leresche
et al., 1991) were reproduced by our model, which included
It and Ca?*-dependent I;,. The silent phase was many sec-
onds long, during which the membrane potential slowly hy-
perpolarized. A transition to periodic oscillations could be
elicited by application of a depolarizing current step only for
some values of the parameter gy,. Experimental studies report
this transition in only two out of 39 cat TC cells (Leresche
et al., 1991).

More importantly, the sequence of resting and oscillatory
behavior obtained was identical to that determined in vitro
(Soltesz et al., 1991). In these experiments, noradrenaline
(NE) was used to change I}, but NE also shifts the activation

function of I;, by a few millivolts (McCormick and Pape,
1990b). We did not include this shift in our simulations.

We also found intermediate patterns of oscillations which
were not reported experimentally. Close to the transition be-
tween slow oscillations and waxing and waning oscillations
there were long oscillatory phases and short silent phases. TC
cells in vitro show a variety of patterns of waxing and waning
oscillations with silent and oscillatory phases of different
lengths. The range of patterns found in the model for different
values of the parameters suggests that the variability ob-
served in vitro might arise from a heterogeneity of the con-
ductance values among neurons.

We also investigated the occurrence of waxing and waning
oscillations in a model comprising I, I,, and the slow K*
current I, (Destexhe and Babloyantz, 1993). The main dif-
ference was that the frequency inside the oscillatory phase
was significantly higher in Ix,-dependent waxing and wan-
ing oscillations (10-14 Hz) compared to the same oscilla- -
tions obtained from the Ca?*-dependent mechanism (3.5—4
Hz). The frequency of oscillations in the Ca2*-dependent
model was much closer to the experimental data of Leresche
et al. (1991).

In the case of the Ca®*-dependent model, the waxing and
waning oscillations were modulated by the kinetics of bind-
ing of Ca®*, whereas, in the case of the Ix,-dependent model,
they appear to be modulated by the slow activation of I,.
Although the values of I and leakage parameters were the
same, 10-fold higher values of g, were needed to observe
similar types of behavior for the Ix,-dependent model.
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FIGURE 11 Induction of a silent phase during slow oscillations. (A) A
strong depolarizing current pulse of 200 ms and 10 pA/cm? (0.1 nA) (arrow)
damps the slow oscillation for several seconds until spontaneously reap-
pearing. Same parameters as in Fig. 6 A. (B) Same sequence of events
illustrated in a V/S, diagram. The stable and unstable branches are as de-
scribed in Fig. 10 B; the closed curve (1) represents the slow oscillation limit
cycle and the dotted arrows (2-5) indicate the sequence of events induced
by the current pulse. The same sequence of events is reported in A.

Ca?* -dependent waxing and waning oscillations were also
observed in the presence of fast Na* and K* currents re-
sponsible for action potentials (unpublished; kinetics taken
from Traub and Miles (1991)). In this case, waxing and wan-
ing oscillations occurred as sequences of rhythmic bursting
(3.5-4 Hz; fast spikes at 50-300 Hz) separated by long silent
phases (4-30 s).

Dynamical mechanisms of waxing and waning
oscillations

Singular approximation was used to characterize the waxing
and waning oscillation as an alternation between two dy-
namical states, a hyperpolarizing stationary phase and an
oscillating phase. The transitions between these two states
were made via a subcritical Hopf bifurcation. It was remark-
able that the same dynamical mechanism underlies both the
Ca?*-dependent and the Ix,-dependent models, despite the
different ionic mechanisms.

Asimilar type of dynamical mechanism was proposed pre-
viously by Rinzel (1987) for the Fitzhugh-Nagumo equations
(Fitzhugh, 1961), in which a subcritical Hopf bifurcation
emerged from a stationary state, leading to bursting oscil-
lations. The same subcritical Hopf structure was also present
during slow oscillations. We found that a strong depolarizing

Biophysical Journal

Volume 65 October 1993
E X TN 120
'a -
g 11
7T Rl 1-40
3 1
LW TR
= ____U !VU_UULN_UUWWW REY
0.2 03 0.4 05 0.6
S

FIGURE 12 Trajectories of waxing and waning oscillations for Iy,-
dependent waxing and waning oscillations. The same type of diagram as Fig.
10 D is constructed with V plotted against S; (same parameters as in Fig.
9). Dashed lines are the presumed positions of oscillatory and stationary
branches.

current pulse of 200 ms can force the TC cell out of the
oscillatory phase for a period of about 15 s before the cells
reverts back to slow oscillations. However, weaker current
pulses do not produce such an interruption but only affect the
phase of the slow oscillations (not shown). This prediction
of the model could be tested experimentally.

The role of I,

Soltesz et al. (1991) suggested that slow oscillations and
waxing and waning rhythmicity observed in vitro correspond
to two different equilibria between It and I;. The results
presented here are consistent with this hypothesis.

The pattern of oscillations depended on the value of the
maximal conductance of I}, and slowly varying this parameter
smoothly transforms the slow oscillations into waxing and
waning oscillations. This suggests that slow oscillations and
waxing and waning oscillations are part of a continuum of
oscillating states that can be determined in part by the maxi-
mal conductance of 1y,

The Ca?*-dependent waxing and waning oscillations were
insensitive to the details of the kinetics of the models for It
and for the kinetics of binding of intracellular Ca2* on I,
channels. However, when Ca?* binding to I, was modeled
by a simple activation scheme (Huguenard and McCormick,
1992) rather than the double activation model (Destexhe and
Babloyantz, 1993), then waxing and waning oscillations
were not be observed over a wide range of parameter values.
These results suggest that the description of I;, by double
activation kinetics might be important for robustly generat-
ing waxing and waning patterns of oscillation, but more evi-
dence is needed to demonstrate this point.

Implications for the physiology of thalamic
oscillations

Our model suggests that interactions between I, I}, and the
leakage currents are the kernel that allows the coexistence of
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tonic firing, slow oscillations, and waxing and waning os-
cillations in TC cells. Experiments can be designed to test
which of the two proposed mechanisms is responsible for the
oscillations. The higher frequency of the Ix,-dependent
model makes it less plausible than the Ca®*-dependent
model. The Ix,-dependent model predicts that the waxing
and waning oscillations should not survive blockage of all
voltage-dependent K™ currents (but not the leak K* currents,
needed to maintain the level of membrane potential). The
Ca®*-dependent model could be tested by altering the in-
tracellular Ca®" levels while monitoring the period of wax-
ing and waning oscillations. The Ca?*-dependent model pre-
dicts that this period should be sensitive to intracellular Ca?*.

The intrinsic oscillating properties of TC cells are difficult
to reconcile with the various types of oscillations found in
vivo (Nunez et al., 1992). The occurrence of spindling in vivo
is thought to be a combination of intrinsic and network prop-
erties (Steriade and Llinas, 1988; Steriade et al., 1993b). In
particular, single thalamic reticular cells are characterized by
7-12-Hz intrinsic oscillations (Avanzini et al., 1989; Bal and
McCormick, 1993), close to the typical frequency of sleep
spindles. Spindle rhythmicity was also found in the isolated
reticular thalamus in vivo (Steriade et al., 1987). On the other
hand, TC cells have a clear tendency to oscillate at a lower
frequency of 0.5—4 Hz (Curré Dossi et al., 1992; Leresche
et al., 1990, 1991; McCormick and Pape, 1990a) and have
been shown to have an active role in the generation of
spindles in vitro (von Krosigk et al., 1993). Computer models
of the intrinsic oscillatory properties of thalamic reticular and
TC cells, as well as their pattern of connectivity, could help
us to understand the cellular bases of spindling (Destexhe
et al., 1993a,b).
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